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1. Introduction

In the Euclidean space R
n, it is well-known that negative powers of the Lapla-

cian admit the integral representation in terms of the Riesz potential or fractional
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integral operator:

(−∆)−s/2f(x) = Is(f) = c(n, s)
∫

Rn

f(y)
|x − y|n−s

dy, 0 < s < n.

One basic result for this operator is the Stein–Weiss inequality, which gives its
behavior in Lebesgue spaces with power weights:

Theorem 1.1 ([19, Theorem B∗]). Let n ≥ 1, 0 < s < n, 1 < p ≤ r < ∞,

α < n
p′ , γ > −n

r , α ≥ γ, and

1
r

=
1
p

+
α − γ − s

n
. (1.1)

Then,

‖|x|γ(−∆)−s/2f‖Lr ≤ C‖|x|αf‖Lp , ∀ f ∈ Lp(Rn, |x|αp). (1.2)

Equivalently, we can rewrite this result as fractional Sobolev inequality, namely,

‖|x|γu‖Lr ≤ C‖|x|α(−∆)s/2u‖Lp, ∀u ∈ Ḣs,p
α (Rn) (1.3)

meaning that we have a continuous embedding

Ḣs,p
α (Rn) ⊂ Lr(Rn, |x|γr)

where

Ḣs,p
α (Rn) = {u = (−∆)−s/2f : f ∈ Lp(Rn, |x|αp)} (1.4)

is the weighted homogeneous Sobolev space of potential type, which is a Banach
space with the norm ‖u‖Ḣs,p

α
= ‖f |x|α‖Lp .

We remark that this embedding is not compact due to the scaling invariance of
the Stein–Weiss inequality. In other words, the scaling condition (1.1) means that
r plays the role of the critical Sobolev exponent in the weighted setting.

Our first aim in this work is to obtain an improved version of (1.2) and (1.3).
More precisely, for suitable values of the parameters we will prove that there holds:

‖|x|γ(−∆)−s/2f‖Lr ≤ C‖|x|αf‖θ
Lp‖f‖1−θ

Ḃ−µ−s
∞,∞

(1.5)

for every f ∈ Lp(Rn, |x|αp) ∩ Ḃ−µ−s
∞,∞ , or, equivalently,

‖|x|γu‖Lr ≤ C‖|x|α(−∆)s/2u‖θ
Lp‖u‖1−θ

Ḃ−µ
∞,∞

(1.6)

for every u ∈ Ḣs,p
α (Rn) ∩ Ḃ−µ∞,∞, where the Besov norm of negative smoothness is

defined in terms of the heat kernel (see Sec. 2 for a precise definition).
The reader will observe that inequality (1.6) is reminiscent of the well-known

Caffarelli–Kohn–Nirenberg first-order interpolation inequality:

Theorem 1.2 ([3]). Assume

p, q ≥ 1, r > 0, 0 ≤ θ ≤ 1,
1
p

+
α

n
,

1
q

+
β

n
,

1
r

+
γ

n
> 0,
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where

γ = θσ + (1 − θ)β.

Then, there exists a positive constant C such that the following inequality holds for
all u ∈ C∞

0 (Rn)

‖|x|γu‖Lr ≤ C‖|x|α∇u‖θ
Lp‖|x|βu‖1−θ

Lq (1.7)

if and only if the following relations hold :

1
r

+
γ

n
= θ

(
1
p

+
α − 1

n

)
+ (1 − θ)

(
1
q

+
β

n

)

0 ≤ α − σ if θ > 0,

and

α − σ ≤ 1 if θ > 0 and
1
p

+
α − 1

n
=

1
r

+
γ

n
.

Indeed, in the local case s = 1 we will also obtain an improvement of this
inequality in some cases, namely, that

‖|x|γu‖Lr ≤ C‖|x|α∇u‖θ
Lp‖u‖1−θ

Ḃ−µ
∞,∞

(1.8)

holds for every u ∈ Ḣ1,p
α (Rn) ∩ Ḃ−µ

∞,∞ for an appropriate range of parameters.
Our second aim in this paper is to prove the existence of extremals of inequal-

ity (1.2) by means of a rearrangement-free technique, that allows us to obtain some
previously unknown cases, namely for p = 2 and 0 < γ < α. Let us recall that, by
definition, the best constant S in (1.2) is

S = sup
‖|x|γ(−∆)−s/2f‖Lr

‖|x|αf‖Lp

, (1.9)

where the supremum is taken over all the non-vanishing functions f ∈ Lp(Rn, |x|αp).
Best constants and the existence of minimizers/maximizers for the Stein–Weiss,

Sobolev and related inequalities have been studied extensively in the literature,
and it would be impossible to cite all the references, but we mention some of them
that are closely related to our work. In a celebrated paper, Lieb proved [14, Theo-
rem 5.1] the existence of minimizers of the Stein–Weiss inequality (in an equivalent
formulation), under the extra assumptions

p < r, α ≥ 0, γ ≤ 0.

The sign restriction on the exponents in his result comes from the fact that his
argument is based on a symmetrization (rearrangement) technique.

Recently, new rearrangement-free techniques for dealing with these inequalities
in the unweighted case have been introduced in [6, 7, 17]. Avoiding the use of rear-
rangements could be useful to extend the results to settings where this technique is
not available, for instance when mixed norms are considered (see, for instance, [5]),
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or in the setting of stratified Lie groups like in [4, 7]. Indeed, we believe that our
results can be extended to the latter setting without essential modifications (replac-
ing n by the homogeneous dimension of the group, and the Euclidean norm by an
homogeneous norm in the group). However, we have chosen to work in the Euclidean
space R

n, in order to make our paper accessible to a broader audience.
Improved Sobolev inequalities play an important role for the proofs of exis-

tence of maximizers via concentration-compactness arguments. We can mention, for
instance, [7, Lemma 4.4] where Frank and Lieb obtain an (unweighted) improved
inequality with a Besov norm in the context of the Heisenberg group, which they
use derive sharp constants for analogues to the Hardy–Littlewood–Sobolev inequal-
ity in that group. More recently, the work of Palatucci and Pisante [17], deals with
the existence of maximizers in the unweighted case (α = γ = 0) in R

n, also using
and improved Sobolev inequality involving a Morrey norm [17, Theorem 1.1], of
which they give two different proofs. One of them, related to our work, is based
on the refined Sobolev inequality of Gérard, Meyer and Oru [9] involving a Besov
norm of negative smoothness, and an embedding result between Besov and Morrey
spaces [17, Lemma 3.4].

Along these lines, the existence of maximizers of (1.9) in the case α = 0 was
considered in [22]. However, we believe that the argument in that paper is not
correct. Indeed, we could not check the validity of inequality (3.2) in [22], as the
application of the invoked rearrangement inequality would require a decreasing
function, that is, a negative exponent in the previous inequality. Hence, we do not
know whether it is possible to perform the argument using the refined Sobolev
inequality with the Morrey norm in the presence of weights. For this reason, we
choose to work directly with the Besov norm and exploit some properties of the heat
semigroup. With our improved inequality (Theorem 3.1), a weighted compactness
result (Proposition 2.2), and the so-called “method of missing mass” (invented by
Lieb in [14]), we can prove the existence of minimizers of the Stein–Weiss inequality
only in the case p = 2 but, in turn, we can have any γ in the range −n

r < γ < α,
thus extending the range γ ≥ 0 of [14].

It should be mentioned that there is increasing literature devoted to the study
of improved versions of the Sobolev–Gagliardo–Nirenberg and related inequalities
for their own sake. Besides the above mentioned papers [9, 17], we can mention
[1, 4, 11–13, 21], among others. In the proof of our improved (1.5) inequality,
instead of using the Littlewood–Paley characterization of the Besov space (as in
[1, 9]), we use a simpler approach inspired by [4], which is based on the thermal
definition of the Besov spaces and the representation of the negative powers of the
Laplacian in terms of the heat semigroup. Besides that, we use the boundedness of
the Hardy–Littlewood maximal function with Muckenhoupt weights, and the Stein–
Weiss inequality. Moreover, our method does not involve truncations (as in [13]),
a technique which seems not to work in our context due to the non-local character
of the fractional Laplacian; and makes no use of rearrangements (as in [12]).
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The rest of the paper is organized as follows: in Sec. 2, we recall the definition
of the Besov spaces of negative smoothness and some results on the heat semi-
group that will be used in the rest of the paper; in Sec. 3, we obtain the improved
Stein–Weiss inequality (1.5) and its rewritten form (1.6), as well as the improved
Caffarelli–Kohn–Nirenberg inequality (1.8); in Sec. 4, we prove that the embedding
given by (1.6) is locally compact; and finally in Sec. 5, we use the method of missing
mass and the results of the previous sections to prove the existence of extremals of
the Stein–Weiss inequality.

2. Weighted Estimates for the Heat Semigroup

In this section, we recall the definition of the Besov spaces of negative smoothness
and collect some auxiliary results for the heat semigroup, which will play a central
role in our approach.

We recall that the heat semigroup e∆t in R
n is given by

et∆f(x0) = f ∗ ht(x0) =
∫

Rn

f(x)ht(x0 − x)dx, (2.1)

where

ht(x) =
1

(4πt)n/2
exp
{
−|x|2

4t

}
is the heat kernel.

We shall use the following thermic definition of the Besov spaces, which goes
back to the work of Flett [8]:

Definition 2.1. For any real δ > 0 one can define the homogeneous Besov space
Ḃ−δ

∞,∞ as the space of tempered distributions u on R
n (possibly modulo polynomials)

for which the following norm

‖u‖Ḃ−δ∞,∞ := sup
t>0

tδ/2‖e∆tf‖L∞

is finite.

We shall also need the following result, which is a particular case of [15, Propo-
sition 3.2]. We include a proof for the sake of completeness:

Proposition 2.1. Let n ≥ 1, 1 ≤ p ≤ +∞. Assume further that

0 ≤ β < α <
n

p′
.

Then the following estimates hold :

|x|β |et∆f(x)| ≤ Ct−
1
2 ( n

p +α)‖|x|αf‖Lp , (2.2)

and

|x|β |∂xj e
t∆f(x)| ≤ Ct−

1
2 ( n

p +α+1)‖|x|αf‖Lp , j = 1, 2, . . . , n (2.3)

for any x ∈ R
n, any t > 0 and any f ∈ Lp(Rn, |x|αp) with C independent from x,

t and f .
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Proof. First observe that et∆f = S√
te

1.∆S 1√
t
f with Sλf(x) = f(x

λ ). Hence, it
suffices to prove the result for t = 1.

By definition,

e1.∆f(x) = (f ∗ h1)(x) =
1

(4π)n/2

∫
Rn

e−|x−y|2/4f(y)dy.

By Hölder’s inequality, we have that

|e1.∆f(x)| ≤ 1
(4π)n/2

‖|x|αf‖Lp

(∫
Rn

e−p′|x−y|2/4|y|−αp′
dy

) 1
p′

=
1

(4π)n/2
‖|x|αf‖LpI(x)

1
p′ .

So that, in order to prove (2.2), we need to show that

I(x) ≤ C|x|−βp′
.

To this end, we split the integral I(x) into two parts:

I(x) =
∫
|x−y|≤1

e−p′|x−y|2/4|y|−αp′
dy +

∫
|x−y|>1

e−p′|x−y|2/4|y|−αp′
dy

:= Iloc(x) + I∞(x)

and bound each one of them separately.
We begin by considering Iloc. We consider two cases:

First case: When |x| < 2. In this case,

|x − y| ≤ 1, |x| < 2 ⇒ |y| ≤ |x| + |x − y| ≤ 2 + 1 = 3.

Then,

Iloc(x) ≤
∫
|y|≤3

|y|−αp′
dy ≤ C if |x| < 2. (2.4)

Second case: When |x| ≥ 2. In this case, we observe that

|x − y| ≤ 1, |x| ≥ 2 ⇒ |y| ≥ |x| − |x − y| ≥ |x| − 1 ≥ |x| − 1
2
|x| =

1
2
|x|.

As a consequence, we obtain that

Iloc(x) ≤
∫
|x−y|≤1

( |x|
2

)−αp′

dy ≤ C|x|−αp′
if |x| ≥ 2. (2.5)

Since 0 ≤ β < α, (2.4) and (2.5) imply that

Iloc(x) ≤ C|x|−βp′
for all x. (2.6)
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Now we can proceed to bound I∞. Again, we consider two cases:

First case: When |x| < 1/2. In this case,

|x − y| > 1, |x| <
1
2
⇒ |y| ≥ |x − y| − |x| > 1 − 1

2
=

1
2

and, therefore,

I∞(x) ≤ 2αp′
∫
|x−y|>1

e−p′|x−y|2/4dy = 2αp′
∫
|z|>1

e−p′|z|2/4dz

which gives

I∞(x) ≤ C if |x| <
1
2
. (2.7)

Second case: When |x| ≥ 1/2. Let us observe that, for any γ > 0 to be chosen
later, there exists a constant Cγ such that

e−u ≤ Cγ

uγ
for all u > 0.

Hence,

I∞(x) ≤ C

∫
Rn

|x − y|−2γ |y|−αp′
dy.

The last integral can be computed explicitly using the well-known identity∫
Rn

|x − y|−2γ |y|−αp′
dy = C|x|n−αp′−2γ

provided that 0 < α < n
p′ and that n−αp′

2 < γ < n
2 (see, e.g. [18, Chap. V, § 1.1]).

Therefore, for such a γ we obtain that

I∞(x) ≤ C|x|n−αp′−2γ

where the exponent is negative. Since

n − αp′ − 2γ ≤ −βp′ ⇔ γ ≤ n − (α − β)p′

2
and now |x| ≥ 1/2, we obtain

I∞(x) ≤ C|x|−βp′
if |x| ≥ 1

2
(2.8)

provided that we choose γ to satisfy n−(α−β)p′

2 < γ < n
2 , as we may under the

conditions of the theorem.
Recalling (2.7), we obtain that

I∞(x) ≤ C|x|−βp′
for all x. (2.9)

From (2.6) and (2.9), we can finally conclude that

I(x) ≤ C|x|−βp′
for all x

as announced, and hence, we obtain the desired bound (2.2) for |x|β |et∆f(x)|. The
bound (2.3) for its derivatives can be obtained analogously.
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Corollary 2.1. We have an embedding

Lp(Rn, |x|αp) ⊂ Ḃ−µ−s
∞,∞

with

µ =
n

p
+ α − s

provided that µ > 0 and 0 < α < n
p′ . By the lifting property of Besov spaces (see

[20, Sec. 5.2.3, Theorem 1]), this implies that

Ḣs,p
α (Rn) ⊂ Ḃ−µ

∞,∞.

It follows that, with this choice of µ, our inequality (1.5) is indeed a refinement of
the Stein–Weiss inequality (1.2), that (1.6) is a refinement of the weighted frac-
tional Sobolev inequality (1.3) and that (1.8) is in some cases a refinement of the
Caffarelli–Kohn–Nirenberg inequality (1.7), in the sense of [17].

Proposition 2.2. Let n ≥ 2, 1 ≤ p ≤ +∞. Then, for any fixed t > 0, the operator
et∆ is compact from Lp(Rn, |x|αp) to L∞(Rn) provided that

0 < α <
n

p′
. (2.10)

Proof. Let {uj}j∈N be a bounded sequence in Lp(Rn, |x|αp), so that

‖|x|αuj‖Lp ≤ C.

Let vj = et∆uj. Then by Proposition 2.1 (with β = 0), {vj}j∈N is bounded in
L∞(Rn).

For each k ∈ N, let us consider the compact set

Ck = {x ∈ R
n : 0 ≤ |x| ≤ k}.

The estimates of Proposition 2.1 also imply that {vj}j∈N is equibounded in Ck,
and so are their first-order derivatives, hence {vj}j∈N is also equicontinuous in Ck.
Using the Arzelá–Ascoli theorem and Cantor’s diagonal argument, we conclude that
passing again to a subsequence we may assume that

vj → v uniformly in each Ck.

Since α > 0 we can choose β > 0 such that 0 < β < α. Then, by Proposition 2.1
we get

sup
|x|>k

|vj | ≤ sup
|x|>k

( |x|
k

)β

|vj |

≤ 1
kβ

‖|x|βvj‖L∞ ≤ C

kβ
‖|x|αuj‖Lp ≤ C1

kβ

which tends to 0 as k → ∞, uniformly in j. A standard argument gives that vj → v

strongly in L∞(Rn).
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3. Improved Inequalities

This section is devoted to establish the “improved” Stein–Weiss and Caffarelli–
Kohn–Nirenberg inequalities. Recall that, as discussed in Corollary 2.1, they are
indeed refinements of the original inequalities, which justifies that name.

Theorem 3.1. Let n ≥ 2, 0 < s < n, 1 < p ≤ r, α < n
p′ , −γ < n

r , α − γ
θ ≥ 0,

µ > 0, max{ p
r , µ

µ+s} ≤ θ ≤ 1, and

γ +
n

r
= θ

(
α +

n

p
− s

)
+ (1 − θ)µ. (3.1)

Then, for every f ∈ Lp(Rn, |x|αp) ∩ Ḃ−µ−s
∞,∞ there holds :

‖|x|γ(−∆)−s/2f‖Lr ≤ C‖|x|αf‖θ
Lp‖f‖1−θ

Ḃ−µ−s
∞,∞

or, equivalently, for every u ∈ Ḣs,p
α (Rn) ∩ Ḃ−µ∞,∞

‖|x|γu‖Lr ≤ C‖|x|α(−∆)s/2u‖θ
Lp‖u‖1−θ

Ḃ−µ
∞,∞

.

Proof. Notice that the case θ = 1 corresponds to Theorem 1.1, so we may restrict
ourselves to the case θ < 1.

Let u := (−∆)−s/2f , where f ∈ Lp(Rn, |x|αpdx). Hence, we write

u =
1

Γ
(s

2

) ∫ ∞

0

ts/2−1et∆f dt

and, for fixed T > 0 to be chosen later, we split the above integral in high and low
frequencies, setting

Hf (x) :=
1

Γ
(s

2

) ∫ T

0

ts/2−1et∆f dt

and

Lf(x) :=
1

Γ
(s

2

) ∫ ∞

T

ts/2−1et∆f dt.

We will obtain pointwise bounds for Lf and Hf .
To bound Lf , we proceed as in [4], using the thermal definition of Besov spaces

(Definition 2.1) to deduce that

|Lf(x)| ≤ C

∫ ∞

T

t−µ/2−1‖f‖Ḃ−µ−s
∞,∞ dt = CT−µ/2‖f‖Ḃ−µ−s

∞,∞ . (3.2)

To bound Hf , we have to consider different cases, according to whether θ = µ
µ+s

or θ > µ
µ+s .

1850034-9
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First case: θ = µ
µ+s .

Observe that in this case, we must also have θ = p
r . Indeed, replacing θ = µ

µ+s

in (3.1) and rearranging terms we have

µ + s

r
− µ

p
=

αµ

n
− γ(µ + s)

n
≥ 0,

where the last inequality follows from the condition α − γ
θ ≥ 0 and the fact that

µ > 0. This immediately implies that p
r ≥ µ

µ+s but, since the reverse inequality
holds by hypothesis, we obtain p

r = µ
µ+s = θ.

Now, replacing θ = µ
µ+s = p

r in (3.1), we obtain αp = γr. This will be useful in
what follows.

Having established the relations between the parameters, we remark that this
case is contained in [4, Annexe C], but we outline the result here for the sake of
completeness. Following [4], we obtain

|Hf(x)| ≤ CT s/2Mf(x), (3.3)

where Mf is the Hardy–Littlewood maximal function.
Now we choose T to optimize the sum of (3.2) and (3.3), namely

T =

(‖f‖Ḃ−µ−s
∞,∞

Mf

) 2
µ+s

,

and we arrive at the pointwise bound

|(−∆)−s/2f | ≤ C(Mf)θ‖f‖1−θ

Ḃ−µ−s
∞,∞

.

This implies

‖(−∆)−s/2f |x|γ‖Lr ≤ C‖(Mf)θ|x|γ‖Lr‖f‖1−θ

Ḃ−µ−s
∞,∞

= C‖Mf |x|γr/p‖θ
Lp‖f‖1−θ

Ḃ−µ−s
∞,∞

≤ C‖f |x|α‖θ
Lp‖f‖1−θ

Ḃ−µ−s
∞,∞

,

where we have used the relations between the parameters and the fact that |x|αp =
|x|γr belongs to the Muckenhoupt class Ap since −n < γr = αp < n(p − 1) by
hypothesis, and hence the Hardy–Littlewood maximal function is continuous in Lp

with that weight (see [16, Theorem 9]).

Second case: θ > µ
µ+s .

In this case, observe that

Hf(x) = (Ks,T ∗ f)(x),

where

Ks,T (x) =
1

Γ
(s

2

) ∫ T

0

ts/2−1ht(x)dt

1850034-10
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and

ht(x) =
1

(4πt)n/2
exp
{
−|x|2

4t

}

is the heat kernel.
Now, setting 2ε = µ/θ − µ > 0 and noting that (n− s)/2 + ε > 0, we have that

e−x ≤ C

x(n−s)/2+ε
for x > 0

whence

0 ≤ Ks,T (x) ≤ C

∫ T

0

t(s−n)/2−1

(
4t

|x|2
)(n−s)/2+ε

dt

≤ C
1

|x|n−s+2ε

∫ T

0

t−1+εdt

≤ C
1

|x|n−s+2ε
T ε.

Hence,

|Hf(x)| ≤ CT εIs−2εf(x) (3.4)

and to optimize the sum of (3.2) and (3.4), we choose

T =

(‖f‖Ḃ−µ−s
∞,∞

Is−2εf(x)

)1/(ε+µ/2)

.

Hence, in this case we have the pointwise bound

|(−∆)−s/2f(x)| ≤ CIs−2εf(x)θ‖f‖1−θ

Ḃ−µ−s
∞,∞

.

Setting r̃ = θr, taking r-norm and using Theorem 1.1, we have

‖|x|γ(−∆)−s/2f‖Lr ≤ C‖|x|γ/θIs−2εf‖θ
Lr̃‖f‖1−θ

Ḃ−µ−s
∞,∞

≤ C‖|x|αf‖θ
Lp‖f‖1−θ

Ḃ−µ−s
∞,∞

. (3.5)

It remains to check the conditions of Theorem 1.1: α < n
p′ and α − γ

θ ≥ 0 are

immediate, while −γ
θ < n

r̃ , p ≤ r̃ and 1
r̃ = 1

p + α−γ/θ−(s−2ε)
n follow by our choice of

r̃ and ε and the hypotheses of our theorem.
This proves our first inequality. To prove the equivalence with the second one

we need to use the lifting property of Besov spaces

‖f‖Ḃ−µ−s
∞,∞ = ‖(−∆)s/2u‖Ḃ−µ−s

∞,∞ = ‖u‖Ḃ−µ
∞,∞

and we arrive at the desired inequality.

As announced, an analogous result can also be obtained in the local case s = 1,
with the gradient instead of the fractional Laplacian. Indeed, Theorem 3.1 implies

1850034-11
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the following refined weighted Sobolev inequality, which is an improvement of the
Caffarelli–Kohn–Nirenberg inequalities [3] in some cases:

Theorem 3.2. Let n > 1, 1 < p ≤ r, α < n
p′ , −n

r < γ < n
r′ , α − γ

θ ≥ 0, µ > 0,

max{ p
r , µ

µ+1} ≤ θ ≤ 1, and

γ +
n

r
= θ

(
α +

n

p
− 1
)

+ (1 − θ)µ.

Then, for every u ∈ Ḣ1,p
α (Rn) ∩ Ḃ−µ

∞,∞

‖|x|γu‖Lr ≤ C‖|x|α∇u‖θ
Lp‖u‖1−θ

Ḃ−µ
∞,∞

.

Proof. We consider the classical Riesz transforms Rj ,

Rju =
∂

∂xj
(−∆)−1/2u.

Since Rj is a Calderón–Zygmund operator, it is bounded in Lr(Rn, |x|γr), because
the weight |x|γr belongs to the Muckenhoupt class Ar by hypothesis. Moreover,
using the Fourier transform, it is easy to check that

n∑
j=1

R2
j = −I.

Then,

‖|x|γu‖Lr ≤
n∑

j=1

‖|x|γR2
ju‖Lr ≤ C

n∑
j=1

‖|x|γRju‖Lr .

We apply Theorem 3.1 (with s = 1) in order to obtain

‖|x|γRju‖Lr ≤ C‖|x|α(−∆)1/2Rju‖θ
Lp‖Rju‖1−θ

Ḃ−µ
∞,∞

≤ C

∥∥∥∥|x|α ∂u

∂xj

∥∥∥∥
θ

Lp

‖Rju‖1−θ

Ḃ−µ
∞,∞

≤ C

∥∥∥∥|x|α ∂u

∂xj

∥∥∥∥
θ

Lp

‖u‖1−θ

Ḃ−µ
∞,∞

since Rj is a bounded operator in the Besov space Ḃ−µ∞,∞ (see [10]). Hence, we
conclude that

‖|x|γu‖Lr ≤ C

n∑
j=1

∥∥∥∥|x|α ∂u

∂xj

∥∥∥∥
θ

Lp

‖u‖1−θ

Ḃ−µ
∞,∞

≤ C‖|x|α∇u‖θ
Lp‖u‖1−θ

Ḃ−µ
∞,∞

as announced.

4. Local Compactness of the Embedding

In this section, we prove a version of the Rellich-Kondrachov theorem for the
weighted homogeneous Sobolev space Ḣs,p

α (Rn). We shall need it in the proof of

1850034-12
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Theorem 5.1, but we believe that it could be of independent interest for the study of
other fractional elliptic problems. It is worth noting that this result does not seem to
follow directly from the standard unweighted version of the compactness theorem,
since it is not easy to perfom truncation arguments due to the non-local nature
of the fractional Laplacian operator in the definition (1.4) of the space Ḣs,p

α (Rn).
Instead, we work directly with the definition of the weighted space.

Theorem 4.1. Let n ≥ 1, 0 < s < n, 1 < p ≤ q < ∞. Assume further that α, β

and s satisfy the set of conditions

β > −n

q
, α <

n

p′
, α ≥ β (4.1)

and

α +
n

p
> s >

n

p
− n

q
+ α − β > 0. (4.2)

Then, for any compact set K ⊂ R
n, we have the compact embedding

Ḣs,p
α (Rn) ⊂ Lq(K, |x|βq). (4.3)

We observe that (4.2) is a subcriticality condition. Indeed, under the hypotheses
of the theorem

s >
n

p
− n

q

and if s < n
p , this is equivalent to

q < p∗ =
np

n − sp
.

We first prove the continuity of the embedding (4.3). Let u ∈ Ḣs,p
α (Rn). Then

u = (−∆)−s/2f with f ∈ Lp(Rn, |x|αp)

and

‖u‖Ḣs,p
α

= ‖|x|αf‖Lp(Rn).

We define a new exponent q̃ satisfying the Stein–Weiss scaling condition
n

q̃
:=

n

p
+ α − β − s.

From (4.2) it follows that q̃ > q. We define

r :=
q̃

q
> 1, β̃ :=

βq

q̃
=

β

r

so that

β > −n

q
⇔ β̃ > −n

q̃

1850034-13
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and apply Hölder’s inequality with exponents r and r′ to obtain∫
K
|u|q|x|βqdx =

∫
K
|u|q|x|βq/r|x|βq/r′

dx

≤
(∫

K
|u|q̃|x|β̃q̃dx

)1/r (∫
K
|x|βqdx

)1/r′

≤ CK

(∫
Rn

|u|q̃|x|β̃q̃dx

)1/r

since β > −n
q . Then, using Theorem 1.1

(∫
K
|u|q|x|βqdx

)1/q

≤ C
1/q
K

(∫
Rn

|u|q̃|x|β̃q̃dx

)1/q̃

≤ C

(∫
Rn

|f |p|x|αp

)1/p

= C‖u‖Ḣs,p
α

.

This shows that (4.3) is a continuous embedding.
The main difficulty in the proof of the local compactness is that the kernel

Kt
s(x) = C(n, s)|x|−(n−s)

of the Riesz potential is not in the dual space Lp′
(Rn, |x|−αp′

). For this reason, we
introduce for t > 0 the truncated kernels

Kt
s(x) = C(n, s)|x|−(n−s)χ{|x|>t}.

The following lemma gives a kind of pseudo-Poincaré inequality using these
kernels.

Lemma 4.1. Under the conditions of Theorem 4.1, set

δ = s −
(

n

p
− n

q
+ α − β

)
.

Then, for any function, u ∈ Lp(Rn, |x|αp) and any t > 0, we have that

‖(Kt
s ∗ u − Ks ∗ u)|x|β‖Lq ≤ Ctδ‖|x|αu‖Lp.

Proof. Notice that

Kt
s ∗ f − Ks ∗ f(x) = C(n, s)

∫
|x−y|≤t

f(y)
|x − y|n−s

dy.

1850034-14
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Hence, since δ > 0 by (4.2),

|Kt
s ∗ f − Ks ∗ f(x)| ≤ C(n, s)

∫
|x−y|≤t

|f(y)|
|x − y|n−s

dy

≤ C(n, s)
∫
|x−y|≤t

|f(y)|
|x − y|n−s

(
t

|x − y|
)δ

dy

≤ C(n, s)tδ
∫

Rn

|f(y)|
|x − y|n−(s−δ)

dy

and the lemma follows from the Stein–Weiss inequality since s−δ > 0 (the definition
of δ means that the required scaling-condition holds with s − δ in place of s).

Now we are ready to prove the compactness of the embedding (4.3): let (uk) be
a bounded sequence Ḣs,p

α (Rn). We may write it as

uk = (−∆)−s/2fk = Ks ∗ fk,

where fk is a bounded sequence in Lp(Rn, |x|αp). By reflexivity, passing to a sub-
sequence, we may assume that

fk ⇀ f weakly in Lp(Rn, |x|αp).

We consider the functions

ut
k = Kt

s ∗ fk, ut = Kt
s ∗ f

and we write

‖(uk − u)|x|β‖Lq(K)

≤ ‖(uk − ut
k)|x|β‖Lq(K) + ‖(ut

k − ut)|x|β‖Lq(K) + ‖(ut − u)|x|β‖Lq(K).

We observe that

‖(uk − ut
k)|x|β‖Lq(K) ≤ tδ‖fk|x|α‖Lp ≤ Ctδ

and that

‖(ut − u)|x|β‖Lq(K) ≤ tδ‖f |x|α‖Lp ≤ Ctδ.

Hence, given ε > 0 we can make this two terms less than ε
3 for all k, provided

that we fix t small enough.
We check that Kt

s(x0−·) is in Lp′
(Rn, |x|−αp′

). For that, we consider the integral.

I(x) :=
∫

Rn

|Kt
s(x − y)|p′ |y|−αp′

dy

= C(n, s)p′
∫
|x−y|>t

1
|x − y|(n−s)p′ |y|−αp′

dy.

The integrability condition at zero is

−αp′ + n > 0 ⇔ α <
n

p′

1850034-15
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and at infinity is

−αp′ − (n − s)p′ + n < 0 ⇔ s < α +
n

p
.

Hence I(x) is finite. We conclude that, that for any fixed t > 0, and any fixed x0

we have that

ut
k(x0) = Kt

s ∗ fk(x0) → Kt
s ∗ f(x0) = ut(x0).

Moreover, we have that for any x0 in the compact set K∫
Rn

|Kt
s(x0 − x)|p′ |x|−αp′

dx ≤ CK. (4.4)

Indeed, if we write

I(x) = I0(x) + I∞(x)

where K ⊂ B(0, R) and

I0(x) = C(n, s)p′
∫
|x−y|>t,|y|≤2R

1
|x − y|(n−s)p′ |y|−αp′

dy,

I∞(x) = C(n, s)p′
∫
|x−y|>t,|y|>2R

1
|x − y|(n−s)p′ |y|−αp′

dy,

then,

I0(x) ≤ C(n, s)p′
∫

y|≤2R

1
t(n−s)p′ |y|−αp′

dy = C(n, s)p′ 1
t(n−s)p′ (2R)−αp′+n.

On the other hand, when x ∈ K and y is in the integration region of I∞

|x| ≤ R <
1
2
|y|

and

|x − y| ≥ |y| − |x| ≥ |y| − 1
2
|y| =

1
2
|y|.

Hence,

I∞(x) ≤ C(n, s)p′
∫
|y|>2R

1(
1
2
|y|
)(n−s)p)′ |y|−αp′

dy

= C̃(s, n, p)R−(n−s)p′−αp′+n

which implies (4.4). Thus, (ut
k) is uniformly bounded on K, and by the bounded

convergence theorem,

‖(ut
k − ut)|x|β‖Lq(C) → 0

as k → ∞ (since the condition β > −n
q means that the weight |x|βq is integrable

on K). Therefore, we can make it less than ε/3 for k ≥ k0(ε).
We conclude that uk → u strongly in Lq(Rn, |x|βq) as we wanted.
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5. Existence of Maximizers of the Stein–Weiss Inequality

In this section, we prove our main theorem, which extends the result of Lieb [14,
Theorem 5.1] to some previously unknown cases when p = 2.

The proof uses a well-known strategy, but the results are new thanks to our
improved Stein–Weiss inequality (Theorem 3.1), and the weighted compactness
results (Proposition 2.2 and Theorem 4.1). First, we show that from any maximizing
sequence we can extract — after a suitable rescaling — a subsequence with a
nonzero weak limit. In the second part, we use the so-called “method of missing
mass” (invented by Lieb in [14]) to prove that such a limit is actually an optimizer.

Theorem 5.1. Assume that n ≥ 2, 0 < s < n
2 , 2 < r < ∞, 0 < α < n

2 ,

−n
r < γ < α and that the relation

1
r
− 1

2
=

α − γ − s

n

holds. Then, there exists a maximizer for S.

Remark 5.1. Notice that condition 0 < s < n
2 does not appear explicitly in

[14, Theorem 5.1] but is implied by the other conditions on the parameters. Indeed,
since α ≥ γ, we have that 1 < r ≤ 2n

n−2s and, in particular, there must hold
n − 2s > 0.

Proof of Theorem 5.1. Let {fk}k∈N be a maximizing sequence of S, that is,

‖|x|αfk‖L2 = 1 and ‖|x|γ(−∆)−s/2fk‖Lr → S. (5.1)

By Corollary 2.1, if we set

µ =
n

2
+ α − s, (5.2)

it holds that

‖fk‖Ḃ−µ−s
∞,∞ ≤ C‖|x|αfk‖L2 = C.

On the other hand, Theorem 3.1 gives that

‖fk‖Ḃ−µ−s
∞,∞ ≥ C > 0

provided we choose θ such that

max
{

2
r
,

µ

µ + s
,
γ

α

}
< θ < 1

which is possible by the hypotheses of the Theorem. This means that

sup
t>0

t
µ+s
2 ‖et∆fk‖L∞ ≥ C > 0.

Consequently, for each k ∈ N we can find tk > 0 such that

t
µ+s
2

k ‖etk∆fk‖L∞ ≥ C

2
> 0.
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Now we set

f̃k(x) = t
1
2 ( n

2 +α)

k fk(t
1
2
k x), (5.3)

and observe that, by parabolic scaling,

e1.∆f̃k(x) = t
1
2 ( n

2 +α)e∆tkfk(t
1
2
k x).

Then,

‖e1.∆f̃k‖L∞ = t
1
2 ( n

2 +α)

k ‖etk∆fk(t
1
2
k x)‖L∞ = t

µ+s
2

k ‖etk∆fk‖L∞ ≥ C

2
> 0 (5.4)

since relation (5.2) holds.
Observe that, in view of the scaling invariance of the L2(Rn, |x|2α) norm, the

sequence {f̃k}k is bounded in L2(Rn, |x|2α) and, that the maximization prob-
lem (1.9) is invariant under the rescaling given by f̃k as long as

γ =
n

2
− n

r
+ α − s,

which holds by our assumptions. Indeed,

‖|x|αf̃k‖L2 = ‖|x|αfk‖L2 = 1. (5.5)

Consequently, {f̃k}k is also a minimizing sequence of S, that is,

‖|x|αf̃k‖L2 = 1 and ‖|x|γ(−∆)−s/2f̃k‖Lr → S. (5.6)

It remains to show that there exists g �≡ 0 such that f̃k → g strongly in
L2(Rn, |x|2α). The last requirement will allow us to deduce that g is also a minimizer
for S, i.e.

‖|x|αg‖L2 = 1 and ‖|x|γ(−∆)−s/2g‖Lr = S. (5.7)

By reflexivity, from (5.5) there exists g ∈ L2(Rn, |x|2α) and a subsequence still
denoted by f̃k such that

f̃k ⇀ g weakly in L2(Rn, |x|2α). (5.8)

We set

uk := (−∆)−s/2f̃k, w := (−∆)−s/2g.

From Proposition 2.2, the compactness of the operator e1.∆ implies that

e1.∆f̃k → e1.∆g strongly in L∞(Rn)

and then g �≡ 0, since by (5.4) we have

‖e1.∆g‖L∞ ≥ C

2
> 0.

By Theorem 4.1 with 2 < q < r and α = β, for any compact set K we have the
compact embedding

Ḣs,2(Rn) ⊂ Lq(K)
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which implies that passing to a subsequence we may assume that

uk → w strongly in Lq(K)

and, therefore, up to a subsequence, uk → w a.e. in K. By using a diagonal argument
we obtain that, again, up to a subsequence,

uk → w a.e. R
n. (5.9)

Let us prove that (5.7) holds. Since uk → w a.e. R
n, the Brezis–Lieb Lemma

([14, Lemma 2.6; 2]) claims that

lim
k→∞

(∫
Rn

|uk|r|x|rγdx −
∫

Rn

|uk − w|r|x|rγdx

)
=
∫

Rn

|w|r |x|rγdx,

but, from (5.6),

lim
k→∞

∫
Rn

|uk|r|x|rγdx =
∫

Rn

|w|r |x|rγdx + lim
k→∞

∫
Rn

|uk − w|r |x|rγdx. (5.10)

Combining (5.10) with (5.6) and the elementary inequality

a
r
2 + b

r
2 ≤ (a + b)

r
2 (5.11)

for a, b ≥ 0 and r > 2, we have

Sr = lim
k→∞

∫
Rn

|uk|r|x|rγdx

=
∫

Rn

|w|r |x|rγdx + lim
k→∞

∫
Rn

|uk − w|r |x|rγdx

≤ Sr

(∫
Rn

|g|2|x|2αdx

) r
2

+ Sr

(
lim sup

k→∞

∫
Rn

|f̃k − g|2|x|2αdx

) r
2

≤ Sr

(∫
Rn

|g|2|x|2αdx + lim sup
k→∞

∫
Rn

|f̃k − g|2|x|2αdx

) r
2

= Sr,

where we have used that∫
Rn

|g|2|x|2αdx + lim sup
k→∞

∫
Rn

|f̃k − g|2|x|2αdx = lim sup
k→∞

∫
Rn

|f̃k|2|x|2αdx = 1

(5.12)

since f̃k ⇀ g weakly in L2(Rn, |x|2α).
Observe that (5.11) is a strict inequality unless a = 0 or b = 0. Hence, since all

the previous inequalities are in fact equalities, we obtain that ‖|x|αg‖L2 = 1 and
f̃ → g strongly in L2(Rn, |x|2α).

By Theorem 1.1, (−∆)−s/2 is a continuous operator from L2(Rn, |x|2α) into
Lr(Rn, |x|γr) and then

uk → w strongly in Lr(Rn, |x|γr)

from where (5.7) follows. The proof is now complete.
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